CONSTANTS, DATA, AND CONVERSIONS FOR PHYSICS EXAM

Acceleration due to gravity near Earth's surface $(g) = 9.80 \text{ m/s}^2 = 9.80 \text{ N/kg}$

Atomic mass unit (amu) = $1.66 \times 10^{-27} \text{kg} = 931.5 \text{ MeV/c}^2$

Avogadro's constant $(N_A) = 6.02 \times 10^{23} / \text{mol}$

Boltzmann constant $(k_B) = 1.38 \times 10^{-23} \text{ J/K}$

calorie = 4.18 J

Coulomb constant $(k) = 1/(4\pi\epsilon_0) = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

Density of air at $STP = 1.29 \text{ kg/m}^3$

Density of water at 20°C and 1 atm = $1.00 \times 10^3 \text{ kg/m}^3$

Electron charge (e^{-}) = 1.60 × 10⁻¹⁹C

Electron mass $(m_e) = 9.11 \times 10^{-31} \text{ kg} = 5.49 \times 10^{-4} \text{ amu} = 0.511 \text{ MeV/c}^2$

Electron volt (eV) = 1.60×10^{-19} J

Gas constant (R) = 8.31 J/mol \cdot K = 0.0821 atm \cdot L/mol \cdot K

Gravitational constant (G) = $6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$

Heat of fusion of ice at STP = $80.0 \text{ cal/g} = 3.33 \times 10^5 \text{ J/kg}$

Heat of vaporization of water at 100° C and 1 atm = $540 \text{ cal/g} = 2.26 \times 10^6 \text{ J/kg}$

Moment of inertia of solid object about axis through the center of mass:

Solid sphere, $\frac{2}{5}MR^2$

Solid cylinder, $\frac{1}{2}MR^2$ (axis of rotation along the axis of cylinder)

Long thin rod, $\frac{1}{12}ML^2$ (axis perpendicular to rod through the center)

Ring, MR²

Permeability of free space (μ_0) = $4\pi \times 10^{-7}$ H/m or N/A²

Physics 6–12 Page 1 of 2

Permittivity of free space = $(\varepsilon_0) = 1/(4\pi k) = 8.85 \times 10^{-12} \,\text{C}^2/\text{N} \cdot \text{m}^2$

Planck's constant (h) = $6.626 \times 10^{-34} \text{ J} \cdot \text{s} = 4.136 \times 10^{-15} \text{ eV} \cdot \text{s}$

Specific heat of water = 1.00 cal/g \bullet °C = 4186 J/kg \bullet °C

Speed of light (c) = 3.00×10^8 m/s

Speed of sound in air at 20°C and 1 atm = 343 m/s

Standard atmosphere pressure = 1 atm = $1.01 \text{ bar} = 1.01 \times 10^5 \text{ Pa}$

$$= 1.01 \times 10^5 \text{ N/m}^2 = 760 \text{ mm Hg}$$

Stefan-Boltzmann constant = $5.67 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$

Page 2 of 2 Physics 6–12